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1 Introduction

In this note, we present an approach to all-quad mesh h-type adaptation that provides the expo-
nential scale reduction of quad-trees, avoids the need for nonconforming interfaces (i.e., hanging
nodes), and yields guaranteed uniform mesh quality.

This approach arose out a need to perform external field computations where the solution
is smoothly varying in a homogeneous far field and there are small scale geometric features that
need to be resolved in the near-field region of interest. Such situations arise, for example, in
the computation of flow over multicomponent airfoils or in electromagnetic (EM) scattering off of
objects. In the case of external fluid flows, the resolution requirements (points per unit length) go
to zero as |x| −→ ∞, while in the EM case the resolution requirements approach a fixed value of
> 5 points per wavelength. The background meshes are thus qualitatively different, and this has
some impact on propagation of mesh refinement, as we will discuss later.

In our particular case, we are considering the solution of EM scattering using quadrilateral
spectral elements. In anticipation of wide spatial variation in resolution requirments, we are devel-
oping a p-type refinement strategy in which the polynomial order within each element may vary
over typical ranges of N=4 to 16. One advantage of such an approach is that it provides more con-
trol over the resolution that one based on quad-refinement alone. For example, with p-refinement
one may have an element of order 12 adjacent to another of order 16 whereas with standard quad-
refinement, the minimal jump in resolution is 2-to-1. We also note that p-type refinement alone is
not sufficient for the far-field problems that we are interested in. One needs the exponential varia-
tion in resolution that is provided by quad-refinements to rapidly scale the element size |x| −→ ∞.
The governing constraints on our meshing problem are as follows. In all parts of the domain, we
would like to have elements as large as possible, so that requisite resolution is obtained through
increased approximation order. (This is the most efficient approach to wave propagation–in the
extreme limit, one recovers a global spectral method.) Thus, in the far field, we should have large
elements and, in the near field, we should have elements small enough to capture to the geometry
of interest, but no smaller. In each element, error estimates are used to determine the polynomial
degree necessary to attain the prescribed level of accuracy.

We note that it is primarily a matter of computational convenience that drives our development
of a conforming mesh refinment strategy. Conformity is not requisite for full h − p refinement
strategies, as has been shown in numerous prior works (e.g., [?, ?, ?]). However, by eliminating
geometric nonconformity (hanging nodes), coding complexity is considerably reduced as one only
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needs to address two cases: adjacent elements A and B are of the same order, or A and B are of
different orders.

Another effective approach to mixed p and h refinement is to use triangular high-order ele-
ments. This is possible within the standard p-type finite element framework. However, the costs
generally scale as O(N2d) per element for each operator evaluation in lRd, d = 2 or 3, and the
polynomial degree for p-type finite elements rarely exceeds N = 5 in practice. Other high-order
triangles have been developed in recent years. There are modal spectral elements of Sherwin and
Karniadakis, which are based on local tensor-product function expansions and have two-dimensional
work and storage (W,S) complexities of O(N3, N2) per element, per operator evaluation. Efficient
high-order nodal bases for triangles have been developed based on Fekete points, which minimize the
determinate of the associated Van der Monde matrix [?], and on generalizations of Gauss point dis-
tributions derived from equilibrium distributions of electrostatic charges [?]. Efficient realizations
using nodal bases have been extensively developed by Hesthaven and Warburton [?] and, despite
having O(N2d) complexity, the nodal bases often outperform the modal triangles for polynomial
degrees typically employed (N=4–8). (We note that the choice of modal or nodal bases should not
be overemphasized, as it is a simple matter to switch between the equivalent representations during
the course of a computation at the cost of a single operator evaluation.) Most recently, high-order
simplicial bases yielding O(Nd) complexity have been developed by the group of Schoeberl that
are quite promising for extending generalized finite element methods to high degree [?]. Numerous
examples with N as high as 15 have been considered by this group.

Without question, triangles and tetrahedral meshes offer significant flexibility in mesh gen-
eration. For configurations that can be appropriately meshed, however, there remain significant
advantages for the use of quadrilateral and hexahedral spectral elements, which have O(Nd+1, Nd)
leading order work and storage complexities. We consider the arguments in lR3, as these are the
essential ones for large-scale applications. First, the hex elements require significantly less indirect
addressing than their simplicial counterparts. This results from the fact that nodes internal to a
hex element can be accessed lexicographically and because there are only 6 faces that need to be
exchanged when coupling elements together. By contrast, a five-tetrahedra decomposition of the
unit cube results in 20 faces that need to be exchanged, each of half the size (i.e., (N + 1)2/2).
Second, the leading-order O(N4) work complexity associated with the hex-based spectral element
method can be cast as cache and vector-efficient matrix-matrix product, which effectively masks
much of the additional work overhead–the actual evaluation time is dominated by memory access
costs, which are only O(N3), with a very small constant. (See [?] for details. We remark that the
same efficiencies apply to the approach of Warburton and Hesthaven [?].)

Here, we present a meshing technique that significantly extends the applicability of quadrilateral-
based spectral elements in lR2. We are currently investigating extensions of this approach to lR3

that will be presented in a future article. We emphasize that our present focus is a “top down”
approach. That is, we are considering only the ability to provide an efficient, high-quality, far- to
near-field mesh transition. We are not considering the much broader (and more difficult) problem
of adapting quad meshes to arbitrary geometries. Such approaches have been extensively devel-
oped by other authors (e.g. [?, ?, ?] CHAMAN.) Our goal here is to present a simple technique
that puts the conforming all-quad mesh on an equal footing with classic two-dimensional quad-tree
based AMR without having to introduce hanging nodes.
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2 Methodology

Two of the central components of quad-refinement are scale invariance and exponential transition.
The first component guarantees mesh quality—elements at one scale are the same shape as those
at another and element quality is thus preserved as a range of scales is traversed. The second
component allows for rapid refinement the vicinity of singularities and is achieved by using a 2-to-1
transition step. A first level of refinement doubles the local linear resolution. A second refinement
in one of the new cells doubles this resolution, and so on, such that one has an exponential rise
in resolution (in this case, 2k) within a fixed region. This process is illustrated for the case of
quad-refinement near a boundary in Fig. ?? a. Our conforming approach to the same problem
derives from the observation that a hexagon, partitioned into two isoceles trapezoids, can be refined
into eight iscoles trapezoids similar to the first and at half the scale. Moreover, adjacent refined
hexagonal regions yield smaller hexagons comprising a similar trapezoid pair. We thus have a 2-to-1
self-similar scale reduction that yields the same essential properties of quad-based AMR.

It is traditional (though not necessary) to keep quad-tree resolution steps at a 2-to-1 ratio.
Thus, if a once-refined domain, Ωe, is to be refined a second time and is also adjacent to an unrefined
domain, Ωe

′

, one insists that Ωe
′

be refined first. This restriction applies to all adjacent element pairs
and can result in refinement propagation. The propagation is generally limited, however, except
in isolated pathological cases and generally poses no significant difficulty. A similar (necessary)
refinement-propagation requirement arises in our conforming-quadrilateral strategy. The refinement
procedure is illustrated in Fig. ??, which shows a sequence of successive refinements about the point
X. We see that the region of refinement is bounded, provided that the far field elements are of
bounded size.

The refinement rule for the hexagonal-based mesh is

(i) If an element is marked for refinement, then the element adjacent to its longest edge must also
be marked.

(ii) An element may be refined only if ... (SEE JOSE THESIS) All new elements introduced by
the refinement step must satisfy If an element is marked for refinement, then the element
adjacent or if its longest edge is coincident with the domain boundary.

Applying these criteria recursively yields the refinement procedure. The refinement criterion is
completely analogous to the Rivara bisection criterion for triangles [?] and all of the properties of
that procedure are thus inherited by the present method. If the far field elements are of uniform
size H, then propagation from a fixed region of interest will be bounded within the first layer of
elements of size H surrounding the region.

To maintain conformity
... grab scale similarity text that s already written..

3 Introduction II

We are concerned with the development of computational meshes that employ as their atomic units
quadrilateral elements in lR2 and hexahedral elements in lR3. Such elements are commonly used
in finite element methods and are the basis for the tensor-product efficiencies of spectral element
methods.

A common difficulty with computational meshes in general, and quadrilateral meshes in par-
ticular, is that mesh refinement originating from isolated features of interest can propagate all the
way to the computational domain boundary if one desires to retain a conforming mesh. Isolated
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features of interest are common in “external” field problems where one is interested in the response
of a device exposed to ambient conditions. Such problems arise, for example, in aeronautics, aeroa-
coustics, and electromagnetics. For quadrilateral meshes, the propagation problem is well-known
and has led to widespread adoption of nonconforming quad-tree discretizations. For triangles,
the Rivara edge-bisection refinement strategy provides quality refinement (i.e., bounded Jacobians)
and typically terminates, but can, under certain pathological conditions, lead to refinement of every
element in the mesh.

Presently, we are interested in developing adaptive mesh refinement (AMR) that preserves
element conformity and employs only quadrilateral elements (or hexahedral in lR3). As an example,
we consider the spectral element meshes around a few isolated cylinder illustrated in Fig. ??. The
mesh on the left shows the cylinders inserted into a hex lattice, while on the right the underlying
lattice is based on squares. We make several remarks about the two mesh configurations. First,
the number of sites where one might place a cylinder is limited by the lattice structure. Our intent
is to initially place the cylinders (or other objects of interest) on the lattice and to then move
them using mesh deformation to the final desired location. Second, both meshes give relatively
uniform resolution throughout the computational domain. Computationaly, the square lattice
is advantageous because the Jacobian that transforms from the element reference domain, Ω̂ :=
[−1, 1]2, to the element Ωe in physical space is constant, whereas it is bilinear for the trapezoids
that form the cells in the hex case. In the region of interest, we note that the hex lattice essentially
preserves the quality of the Jacobian because no new sharp angles are introduced, while the square
lattice does incur some penalty resulting from the 45 degree angles in the mesh. As configured, the
hex lattice can be transformed into a square (or rectangular) lattice by a simple transformation
that straightens out the vertical dividing lines. One could thus recover the attractive feature of a
constant Jacobian in the far-field. It is interesting to note that one can change the hex-mesh by
simply “turning” a cell by 60 degrees. If we then apply the straightening, we recover elements that
have vanishing Jacobians. So, while there is an isomorphism between our trapezoidal-based hex
lattice and the square lattice, it only holds under restricted circumstances.

An interesting feature of the hex lattice is that it possesses a self-similarity property that is
key to AMR. Figure ?? shows a sequence of refinements that focuses on a particular region of
interest (ROI). Starting at the coarsest level, one identifies the hexagon containing the ROI. This
hexagon is refined, producing eight trapezoids that are similar to the original two and thus yielding
the fourfold increase in areal resolution that would be expected from a single localized bisection
refinement step. To go to the next level, one needs to also refine the neighboring hexagon, as seen in
Fig. ??c. It is clear, however, that the refinement does not propagate beyond the nearest neighbor.
The self-similarity feature, which ensures bounded Jacobians, and nonpropagation, imply that the
hexagonal mesh provides a sound basis for AMR. Figure ??d illustrates several levels of refinement
around an array of cylinders.

With an understanding of how we can generate conforming quad-based AMR in lR2, it is
natural to ask if there is an equivalent extension in lR3. Such analogies do not always exist. For
example, a quad-refinement of an equilateral triangle yields four equilateral triangles with half the
linear dimension of the original. By recursion, this implies that equilateral triangles can fill space
in lR2. In lR3, however, an oct-refine of a regular tetrahedron does not yield eight self-similar
tetrahedra, which explains why regular tetrahedra cannot fill space in three dimensions. What is
needed in the present case is the three-dimensional equivalent to the hexagon. This is given by the
rhombic dodecahedron (RD), which is the Voronoi cell associated with a face-centered cubic (fcc)
lattice packing of spheres in lR3 [?]. Like the hexagon, the RD fills space. Fortunately, the faces of
the RD are all quadrilaterals, which makes it a good candidate for 3D AMR based on hexahedral
elements. The RD can be decomposed in to four hexahedral elements, each is a regular rhomboid
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Figure 1: Hexagonal-based mesh showing six generations of refinement along a boundary. The
mesh is conforming, the elements are uniform in shape and quality and the refinement is confined
within the first layer of hexagons at the coarsest level.

with equal edge lengths. Under local refinement, each of the 12 faces is extended inwards and a
new rhomboid is placed at the center,

So far, we have only addressed AMR from the top-down (or, more precisely, coarse-to-fine)
perspective. We are not attempting to resolve the general problem of all-quad meshing but simply
to address the question of AMR requirements for external field problems. We are assuming that
the applications specialist will have techniques that are specific to the geometry at hand. For the
case of cylinders (and) spheres, however, this approach is immediately applicable.
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Figure 2: Hexagonal-based mesh refinement in the vicinity of a nanodevice. Here, nanoparticles
have been sited at 4th-generation lattice points. Mesh motion will be employed to adjust the
particles to more general positions.
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